3.469 \(\int \frac {\sec ^6(c+d x)}{(a+b \tan ^2(c+d x))^2} \, dx\)

Optimal. Leaf size=104 \[ -\frac {\left (3 a^2-2 a b-b^2\right ) \tan ^{-1}\left (\frac {\sqrt {b} \tan (c+d x)}{\sqrt {a}}\right )}{2 a^{3/2} b^{5/2} d}+\frac {(a-b)^2 \tan (c+d x)}{2 a b^2 d \left (a+b \tan ^2(c+d x)\right )}+\frac {\tan (c+d x)}{b^2 d} \]

[Out]

-1/2*(3*a^2-2*a*b-b^2)*arctan(b^(1/2)*tan(d*x+c)/a^(1/2))/a^(3/2)/b^(5/2)/d+tan(d*x+c)/b^2/d+1/2*(a-b)^2*tan(d
*x+c)/a/b^2/d/(a+b*tan(d*x+c)^2)

________________________________________________________________________________________

Rubi [A]  time = 0.14, antiderivative size = 104, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {3675, 390, 385, 205} \[ -\frac {\left (3 a^2-2 a b-b^2\right ) \tan ^{-1}\left (\frac {\sqrt {b} \tan (c+d x)}{\sqrt {a}}\right )}{2 a^{3/2} b^{5/2} d}+\frac {(a-b)^2 \tan (c+d x)}{2 a b^2 d \left (a+b \tan ^2(c+d x)\right )}+\frac {\tan (c+d x)}{b^2 d} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^6/(a + b*Tan[c + d*x]^2)^2,x]

[Out]

-((3*a^2 - 2*a*b - b^2)*ArcTan[(Sqrt[b]*Tan[c + d*x])/Sqrt[a]])/(2*a^(3/2)*b^(5/2)*d) + Tan[c + d*x]/(b^2*d) +
 ((a - b)^2*Tan[c + d*x])/(2*a*b^2*d*(a + b*Tan[c + d*x]^2))

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 385

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> -Simp[((b*c - a*d)*x*(a + b*x^n)^(p +
 1))/(a*b*n*(p + 1)), x] - Dist[(a*d - b*c*(n*(p + 1) + 1))/(a*b*n*(p + 1)), Int[(a + b*x^n)^(p + 1), x], x] /
; FreeQ[{a, b, c, d, n, p}, x] && NeQ[b*c - a*d, 0] && (LtQ[p, -1] || ILtQ[1/n + p, 0])

Rule 390

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Int[PolynomialDivide[(a + b*x^n)
^p, (c + d*x^n)^(-q), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && IGtQ[p, 0] && ILt
Q[q, 0] && GeQ[p, -q]

Rule 3675

Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol] :> With[
{ff = FreeFactors[Tan[e + f*x], x]}, Dist[ff/(c^(m - 1)*f), Subst[Int[(c^2 + ff^2*x^2)^(m/2 - 1)*(a + b*(ff*x)
^n)^p, x], x, (c*Tan[e + f*x])/ff], x]] /; FreeQ[{a, b, c, e, f, n, p}, x] && IntegerQ[m/2] && (IntegersQ[n, p
] || IGtQ[m, 0] || IGtQ[p, 0] || EqQ[n^2, 4] || EqQ[n^2, 16])

Rubi steps

\begin {align*} \int \frac {\sec ^6(c+d x)}{\left (a+b \tan ^2(c+d x)\right )^2} \, dx &=\frac {\operatorname {Subst}\left (\int \frac {\left (1+x^2\right )^2}{\left (a+b x^2\right )^2} \, dx,x,\tan (c+d x)\right )}{d}\\ &=\frac {\operatorname {Subst}\left (\int \left (\frac {1}{b^2}-\frac {a^2-b^2+2 (a-b) b x^2}{b^2 \left (a+b x^2\right )^2}\right ) \, dx,x,\tan (c+d x)\right )}{d}\\ &=\frac {\tan (c+d x)}{b^2 d}-\frac {\operatorname {Subst}\left (\int \frac {a^2-b^2+2 (a-b) b x^2}{\left (a+b x^2\right )^2} \, dx,x,\tan (c+d x)\right )}{b^2 d}\\ &=\frac {\tan (c+d x)}{b^2 d}+\frac {(a-b)^2 \tan (c+d x)}{2 a b^2 d \left (a+b \tan ^2(c+d x)\right )}-\frac {((a-b) (3 a+b)) \operatorname {Subst}\left (\int \frac {1}{a+b x^2} \, dx,x,\tan (c+d x)\right )}{2 a b^2 d}\\ &=-\frac {(a-b) (3 a+b) \tan ^{-1}\left (\frac {\sqrt {b} \tan (c+d x)}{\sqrt {a}}\right )}{2 a^{3/2} b^{5/2} d}+\frac {\tan (c+d x)}{b^2 d}+\frac {(a-b)^2 \tan (c+d x)}{2 a b^2 d \left (a+b \tan ^2(c+d x)\right )}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.66, size = 104, normalized size = 1.00 \[ \frac {-\frac {(3 a+b) (a-b) \tan ^{-1}\left (\frac {\sqrt {b} \tan (c+d x)}{\sqrt {a}}\right )}{a^{3/2}}+\frac {\sqrt {b} (a-b)^2 \sin (2 (c+d x))}{a ((a-b) \cos (2 (c+d x))+a+b)}+2 \sqrt {b} \tan (c+d x)}{2 b^{5/2} d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^6/(a + b*Tan[c + d*x]^2)^2,x]

[Out]

(-(((a - b)*(3*a + b)*ArcTan[(Sqrt[b]*Tan[c + d*x])/Sqrt[a]])/a^(3/2)) + ((a - b)^2*Sqrt[b]*Sin[2*(c + d*x)])/
(a*(a + b + (a - b)*Cos[2*(c + d*x)])) + 2*Sqrt[b]*Tan[c + d*x])/(2*b^(5/2)*d)

________________________________________________________________________________________

fricas [B]  time = 0.54, size = 479, normalized size = 4.61 \[ \left [\frac {{\left ({\left (3 \, a^{3} - 5 \, a^{2} b + a b^{2} + b^{3}\right )} \cos \left (d x + c\right )^{3} + {\left (3 \, a^{2} b - 2 \, a b^{2} - b^{3}\right )} \cos \left (d x + c\right )\right )} \sqrt {-a b} \log \left (\frac {{\left (a^{2} + 6 \, a b + b^{2}\right )} \cos \left (d x + c\right )^{4} - 2 \, {\left (3 \, a b + b^{2}\right )} \cos \left (d x + c\right )^{2} + 4 \, {\left ({\left (a + b\right )} \cos \left (d x + c\right )^{3} - b \cos \left (d x + c\right )\right )} \sqrt {-a b} \sin \left (d x + c\right ) + b^{2}}{{\left (a^{2} - 2 \, a b + b^{2}\right )} \cos \left (d x + c\right )^{4} + 2 \, {\left (a b - b^{2}\right )} \cos \left (d x + c\right )^{2} + b^{2}}\right ) + 4 \, {\left (2 \, a^{2} b^{2} + {\left (3 \, a^{3} b - 4 \, a^{2} b^{2} + a b^{3}\right )} \cos \left (d x + c\right )^{2}\right )} \sin \left (d x + c\right )}{8 \, {\left (a^{2} b^{4} d \cos \left (d x + c\right ) + {\left (a^{3} b^{3} - a^{2} b^{4}\right )} d \cos \left (d x + c\right )^{3}\right )}}, \frac {{\left ({\left (3 \, a^{3} - 5 \, a^{2} b + a b^{2} + b^{3}\right )} \cos \left (d x + c\right )^{3} + {\left (3 \, a^{2} b - 2 \, a b^{2} - b^{3}\right )} \cos \left (d x + c\right )\right )} \sqrt {a b} \arctan \left (\frac {{\left ({\left (a + b\right )} \cos \left (d x + c\right )^{2} - b\right )} \sqrt {a b}}{2 \, a b \cos \left (d x + c\right ) \sin \left (d x + c\right )}\right ) + 2 \, {\left (2 \, a^{2} b^{2} + {\left (3 \, a^{3} b - 4 \, a^{2} b^{2} + a b^{3}\right )} \cos \left (d x + c\right )^{2}\right )} \sin \left (d x + c\right )}{4 \, {\left (a^{2} b^{4} d \cos \left (d x + c\right ) + {\left (a^{3} b^{3} - a^{2} b^{4}\right )} d \cos \left (d x + c\right )^{3}\right )}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^6/(a+b*tan(d*x+c)^2)^2,x, algorithm="fricas")

[Out]

[1/8*(((3*a^3 - 5*a^2*b + a*b^2 + b^3)*cos(d*x + c)^3 + (3*a^2*b - 2*a*b^2 - b^3)*cos(d*x + c))*sqrt(-a*b)*log
(((a^2 + 6*a*b + b^2)*cos(d*x + c)^4 - 2*(3*a*b + b^2)*cos(d*x + c)^2 + 4*((a + b)*cos(d*x + c)^3 - b*cos(d*x
+ c))*sqrt(-a*b)*sin(d*x + c) + b^2)/((a^2 - 2*a*b + b^2)*cos(d*x + c)^4 + 2*(a*b - b^2)*cos(d*x + c)^2 + b^2)
) + 4*(2*a^2*b^2 + (3*a^3*b - 4*a^2*b^2 + a*b^3)*cos(d*x + c)^2)*sin(d*x + c))/(a^2*b^4*d*cos(d*x + c) + (a^3*
b^3 - a^2*b^4)*d*cos(d*x + c)^3), 1/4*(((3*a^3 - 5*a^2*b + a*b^2 + b^3)*cos(d*x + c)^3 + (3*a^2*b - 2*a*b^2 -
b^3)*cos(d*x + c))*sqrt(a*b)*arctan(1/2*((a + b)*cos(d*x + c)^2 - b)*sqrt(a*b)/(a*b*cos(d*x + c)*sin(d*x + c))
) + 2*(2*a^2*b^2 + (3*a^3*b - 4*a^2*b^2 + a*b^3)*cos(d*x + c)^2)*sin(d*x + c))/(a^2*b^4*d*cos(d*x + c) + (a^3*
b^3 - a^2*b^4)*d*cos(d*x + c)^3)]

________________________________________________________________________________________

giac [A]  time = 2.44, size = 128, normalized size = 1.23 \[ \frac {\frac {2 \, \tan \left (d x + c\right )}{b^{2}} - \frac {{\left (\pi \left \lfloor \frac {d x + c}{\pi } + \frac {1}{2} \right \rfloor \mathrm {sgn}\relax (b) + \arctan \left (\frac {b \tan \left (d x + c\right )}{\sqrt {a b}}\right )\right )} {\left (3 \, a^{2} - 2 \, a b - b^{2}\right )}}{\sqrt {a b} a b^{2}} + \frac {a^{2} \tan \left (d x + c\right ) - 2 \, a b \tan \left (d x + c\right ) + b^{2} \tan \left (d x + c\right )}{{\left (b \tan \left (d x + c\right )^{2} + a\right )} a b^{2}}}{2 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^6/(a+b*tan(d*x+c)^2)^2,x, algorithm="giac")

[Out]

1/2*(2*tan(d*x + c)/b^2 - (pi*floor((d*x + c)/pi + 1/2)*sgn(b) + arctan(b*tan(d*x + c)/sqrt(a*b)))*(3*a^2 - 2*
a*b - b^2)/(sqrt(a*b)*a*b^2) + (a^2*tan(d*x + c) - 2*a*b*tan(d*x + c) + b^2*tan(d*x + c))/((b*tan(d*x + c)^2 +
 a)*a*b^2))/d

________________________________________________________________________________________

maple [A]  time = 0.65, size = 181, normalized size = 1.74 \[ \frac {\tan \left (d x +c \right )}{b^{2} d}+\frac {a \tan \left (d x +c \right )}{2 d \,b^{2} \left (a +b \left (\tan ^{2}\left (d x +c \right )\right )\right )}-\frac {\tan \left (d x +c \right )}{d b \left (a +b \left (\tan ^{2}\left (d x +c \right )\right )\right )}+\frac {\tan \left (d x +c \right )}{2 a d \left (a +b \left (\tan ^{2}\left (d x +c \right )\right )\right )}-\frac {3 a \arctan \left (\frac {\tan \left (d x +c \right ) b}{\sqrt {a b}}\right )}{2 d \,b^{2} \sqrt {a b}}+\frac {\arctan \left (\frac {\tan \left (d x +c \right ) b}{\sqrt {a b}}\right )}{d b \sqrt {a b}}+\frac {\arctan \left (\frac {\tan \left (d x +c \right ) b}{\sqrt {a b}}\right )}{2 d a \sqrt {a b}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^6/(a+b*tan(d*x+c)^2)^2,x)

[Out]

tan(d*x+c)/b^2/d+1/2/d/b^2*a*tan(d*x+c)/(a+b*tan(d*x+c)^2)-1/d/b*tan(d*x+c)/(a+b*tan(d*x+c)^2)+1/2*tan(d*x+c)/
a/d/(a+b*tan(d*x+c)^2)-3/2/d/b^2*a/(a*b)^(1/2)*arctan(tan(d*x+c)*b/(a*b)^(1/2))+1/d/b/(a*b)^(1/2)*arctan(tan(d
*x+c)*b/(a*b)^(1/2))+1/2/d/a/(a*b)^(1/2)*arctan(tan(d*x+c)*b/(a*b)^(1/2))

________________________________________________________________________________________

maxima [A]  time = 0.94, size = 100, normalized size = 0.96 \[ \frac {\frac {{\left (a^{2} - 2 \, a b + b^{2}\right )} \tan \left (d x + c\right )}{a b^{3} \tan \left (d x + c\right )^{2} + a^{2} b^{2}} + \frac {2 \, \tan \left (d x + c\right )}{b^{2}} - \frac {{\left (3 \, a^{2} - 2 \, a b - b^{2}\right )} \arctan \left (\frac {b \tan \left (d x + c\right )}{\sqrt {a b}}\right )}{\sqrt {a b} a b^{2}}}{2 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^6/(a+b*tan(d*x+c)^2)^2,x, algorithm="maxima")

[Out]

1/2*((a^2 - 2*a*b + b^2)*tan(d*x + c)/(a*b^3*tan(d*x + c)^2 + a^2*b^2) + 2*tan(d*x + c)/b^2 - (3*a^2 - 2*a*b -
 b^2)*arctan(b*tan(d*x + c)/sqrt(a*b))/(sqrt(a*b)*a*b^2))/d

________________________________________________________________________________________

mupad [B]  time = 12.41, size = 119, normalized size = 1.14 \[ \frac {\mathrm {tan}\left (c+d\,x\right )}{b^2\,d}+\frac {\mathrm {tan}\left (c+d\,x\right )\,\left (a^2-2\,a\,b+b^2\right )}{2\,a\,d\,\left (b^3\,{\mathrm {tan}\left (c+d\,x\right )}^2+a\,b^2\right )}+\frac {\mathrm {atan}\left (\frac {\sqrt {b}\,\mathrm {tan}\left (c+d\,x\right )\,\left (a-b\right )\,\left (3\,a+b\right )}{\sqrt {a}\,\left (-3\,a^2+2\,a\,b+b^2\right )}\right )\,\left (a-b\right )\,\left (3\,a+b\right )}{2\,a^{3/2}\,b^{5/2}\,d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(cos(c + d*x)^6*(a + b*tan(c + d*x)^2)^2),x)

[Out]

tan(c + d*x)/(b^2*d) + (tan(c + d*x)*(a^2 - 2*a*b + b^2))/(2*a*d*(a*b^2 + b^3*tan(c + d*x)^2)) + (atan((b^(1/2
)*tan(c + d*x)*(a - b)*(3*a + b))/(a^(1/2)*(2*a*b - 3*a^2 + b^2)))*(a - b)*(3*a + b))/(2*a^(3/2)*b^(5/2)*d)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sec ^{6}{\left (c + d x \right )}}{\left (a + b \tan ^{2}{\left (c + d x \right )}\right )^{2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**6/(a+b*tan(d*x+c)**2)**2,x)

[Out]

Integral(sec(c + d*x)**6/(a + b*tan(c + d*x)**2)**2, x)

________________________________________________________________________________________